
Overcooked: Food-programmable Gate Array
Digital Systems Laboratory

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Julia Arnold
jul@mit.edu

Kye Burchard
kyeb@mit.edu

Lacthu Vu
lacthu@mit.edu

Abstract—Overcooked is a traditionally multiplayer
cooking game where players must prepare and serve dishes
under time pressure. During a round, the players are
presented with orders which must be completed within a
short time window, otherwise they lose points. Food that is
cooked too long catches on fire. Our project implements a
streamlined version of the original video game. The greatest
challenges we faced were. Future work includes adding
more levels and foods, a leaderboard saved in the server
and more dynamic fire.

I. INTRODUCTION

In order to create Overcooked as an FPGA game,
the project was split into three major groups which
have been tasked to the three team members respec-
tively: game state & logic, graphics and multiplayer
communications. Each were written and tested fairly
independently, then integrated fully together in the final
weeks.

II. STRUCTURAL DESCRIPTION OF THE TOP LEVEL
MODULE (ALL)

The top level module brings everything together to
determine player actions, sync between players and then
make that appear on each screen. First we define the
25.175 MHz clock needed for the graphics as well as
keeping the 100 MHz clock for serial communications.
We define all the player inputs available. This includes:

• Player ID: sw[1:0]
• Number of players: sw [3:2]
• Reset: sw[4]
• Pause: sw[14]
• Carry: sw[15]
• Player movement/direction: Up, down, left, right

buttons
• Chop: Center button
In order for the game to work in multiplayer, each

player has to input the correct switches for player ID and
number of players, and make sure player ID is unique
among participants. Player 0 requires a one line variation
in the ESP32 code.

Next, all of the button inputs are debounced. We define
variables for comms, local, and truth that can be switched

through depending on number of players and player ID.
Comms takes in local player variables and outputs the
truth for all four players.

Also included in the top level are the variables tied to
making the level timer start and stop, dependent on the
game state determined by the main FPGA. Finally the
modules for game logic and graphics are called, as well
as handling the signals needed for the VGA display.

III. GAME LOGIC (JULIA)

The overall game logic module is responsible for
controlling all the inner workings of the game, and its
outputs are fed to the graphics modules in coordination
with the communications module based on how many
players are involved. The game is primarily controlled
by three modules: individual player control, main FPGA
control and time remaining.

A. Individual Player Movement

Modules for player movement and player state were
combined in this module to run locally on each FPGA.
We designed this so that a local player would not
experience any lag versus a situation where their button
presses were sent to the server and processed there.

The player move module was responsible for individ-
ual player movement on the board. I also added colli-
sions here by considering the other players’ locations
received from the server. Player collisions took much
longer than expected to implement to get the logic just
right. I used a series of inequalities to define the moving
player in relation to the others. Then I weighted the
equations by a few pixels to make them easier to pass
except for the direction towards the collision object. This
allows the player to unstick once the two have collided
and want to move away in another direction.

Outputs:
• Player locations in pixels, 9 bits each

– x-position
– y-position

• Player facing direction, 2 bits
0) Left



1) Right
2) Up
3) Down

The other part of the overall module was to update
the player state based on their chop or carry action and
location. This module defined all of the actions a player
could do, like how to grab soup from a pot or turn on
the fire extinguisher. This would move the player state
between the following 11 options:

0) Do nothing
1) Chopping
2) Holding whole onion
3) Holding chopped onion
4) Holding empty pot
5) Holding raw pot
6) Holding cooked pot
7) Holding empty bowl
8) Holding bowl with soup
9) Holding fire extinguisher, off

10) Holding fire extinguisher, on

These three variables (direction, location, state) would
then be sent to the main FPGA in order to update the
global object grid.

B. Main FPGA Player Movement

The main FPGA was in charge of outputting many
variables for all of the players. The same code was used
for every FPGA, so the main FPGA control module
was on every FPGA. However, a mux at the top level
determined whether the FPGA should listen to the local
or network version of the variables based on player ID,
so each FPGA would always only listen to player 0.

The first thing main control does is determine the
overall game state. The game consists of 5 states as
follows:

0) Welcome Menu
• All players set their individual player number

and number of players total
• Hit btnc to start game

1) Game Introduction - Wait 3 seconds so players can
view map, players can’t move

2) Start Game - Timer starts, players can move
3) Pause Game - Timer pauses, all objects freeze
4) Finish Game - Once timer runs out, press any

button to return to State 0

In the welcome menu, I also implemented a state
machine where player 0 can create a team name that
consists of 3 characters, in ASCII that could be saved
with the player score to the server.

The main FPGA control module also contains an
orders and points module and a module that considers
players actions in order to update the object grid.

The orders and points module out puts a 4 bit array
that has a 1 for every order that is active, and a
corresponding array of time remaining to fill the order.
The module checks to see if there are no active orders,
and adds a new one if so. Otherwise it adds an order
every 20 seconds unless the array is full.

The module also receives the state of the two turn in
spots, and if there is soup, adds points. Players receive a
baseline 20 points for each order filled and an additional
2 to 6 points as a time-scaled bonus for completing an
order early. Once the points are added, the module sends
a clear space signal to the action module so that the soup
disappears. This module also takes away 10 points if the
order timer expires and removes the order.

The other module under main control is ”action”
which updates the global object grid. The object grid
is a 8 by 13 by 4 bit array that divides the player space
by those dimensions. Each space has a 4 bit state, which
corresponds to those listed here:

0) Empty
1) Onion, whole
2) Onion, chopped
3) Bowl, empty
4) Bowl, full of cooked soup
5) Pot, empty
6) Raw pot, full
7) Cooked pot, full
8) Pot on fire
9) Empty counter space on fire

10) Fire extinguisher

The module takes all the player actions, including the
local player, and updates the grid of objects based on
changes in player state. For example, if a player state
was “holding bowl” and now it is nothing, we know they
put the bowl down and now the object grid should have a
bowl one space in front. The supporting modules convert
player pixel location to grid and check what object is in
front of a player.

Since it is updating the object grid, this module is
also responsible for tracking chopping, cooking and
combustion time. When a player puts an onion down
and starts chopping, a timer counts down to when the
onion converts into a chopped onion. Once an uncooked
pot is placed on the stove, another timer starts to count
down to when it is cooked. These timers were made to
address the grid coordinates for each location that needed
it, so two cutting boards and two pots meant four timers
total. In addition, there were two timers for combustion
length. Once a pot became cooked, this started a timer
for when the pot would catch on fire. Each stove top
required a state machine that switched from nothing to
cooking to on fire and back once a player put the fire
out with the extinguisher.



Pixel to grid is a quick conversion for players’ loca-
tions in order to interact correctly with objects. This is
implemented as a quick subtraction and shift. Originally
I wrote every line out as an inequality before Lacthu
showed it could be done by this simple method.

The grid in front module returns the coordinates of the
grid in front of a player by considering their direction
and location. Again, it was more streamlined to write a
quick reference function than to write out the specifics
every time.

Similarly, the check in front module returns the object
in front of the player based on the grid and the player’s
direction and location. This helps the main module know
what object is there and therefore what state the player
should switch into when an action is taken.

C. Time Remaining

This module starts once the state becomes ”Start
Game”. It counts down once every second unless the
game is paused. Once time left is zero, the game moves
to the next state, ”Finish Game”. The amount of time
remaining appears on the hex display in decimal after
being converted by Lacthu’s hex-to-decimal module.

We were able to make this module act entirely local
so that communications didn’t have to send the time over
the network, since minimal bits is preferred. It is solely
determined off the game state, which takes just 3 bits to
send.

D. Lessons Learned

Overall, I learned a lot over time about how to use
methods that work smarter not harder. With Verilog there
is a balance between hardwiring things and finding more
algorithmic ways to solve the problem, like the pixel-to-
grid module. I wasn’t able to make the fire spread when
food was on the stove for too long because I couldn’t
find a way to do it feasibly.

It was also a challenge to keep everything organized
over time, and we were occasionally tripped up by
slightly different variable names that demanded hours
of debugging time. Given more time, I would want to
clean up extraneous items like unneeded variables and
poor naming, as well as adding extra features to the
game. Overall, our team effort was well integrated via
Github, frequent meetings and overall responsiveness so
this made it easier to solve other challenges.

Most of the time went to designing state machines
and debugging them once they were written. There are
a lot of combinations of possibilities that the various
state machines had to address, and a lot of loopholes
that I had to go back and address. I tested my code via
testbenches and then moved to tracking down bugs we
found as we played the game. For example, it took me a
while to find the loophole that caused the pots to catch

on fire immediately when an onion was added to the
stove because the timer wasn’t resetting on exit the first
time through. Things mostly worked the way I expected
the first time through, which means the time invested
in thinking things out first and communicating with my
team about how we would connect things was worth it.

IV. GRAPHICS (LACTHU)

Fig. 1. Screenshot of the real Overcooked! game

Fig. 2. Screenshot of our Overcooked! FPGA game, in 4 player
multiplayer

The graphics module was responsible for reading state
from the game logic module and displaying the game
map, order displays, and the player and food sprites on
the screen. This overall module takes as input the clock,
reset, and VGA signals (hcount, vcount, hsync, vsync,
and blank), as well as the game state of the main FPGA,
the current grid state, the orders and time remaining on
the orders, and the direction, (x, y) position, and state of
all four players and outputs the RGB value for a pixel at
the current hcount and vcount values. This game used a
640x480 pixel display, which we converted into a 20x15
top-down grid, with each square of the grid being 32x32
pixels. The game board itself only uses up a 13x8 grid
space on a rectangular map, which is the same size as the
one in the screenshot in Figure 1, without the bottleneck
in the center, to avoid having as many collisions in game.



The graphics modules were divided into a few modules
for each category of item that needed to be displayed.
pixel_out values from each of these modules were
combined in the top level graphics module based on a z-
index, determining which pixel should be output: (items
on counters had a higher index than counters, the player
had the highest index to always be displayed).

States:
• Welcome Menu
• Game
Inputs:
• clock, reset
• From VGA Module

– hcount, vcount
– hsync, vsync
– blank

• From Game Logic Module
– local player_state
– local player_direction
– local player_x, player_y

• From Networking Module
– online game_state
– online player_state
– online player_direction
– online player_x, player_y
– main object_grid
– main orders, order_times
– main object_grid

Outputs:
• pixel_out - 12 bit RGB values to display
• hsync_out, vsync_out, blank_out

A. Game Map

Fig. 3. Sprite used to display the static objects in the background of
the map.

The game map takes in an hcount and vcount value
and outputs a pixel at the current (hcount, vcount) for
any constant tiles independent of the game state, such
as the background, tabletop counters, walls, and flooring.

Initially, this was meant to be done using a blue rectangle
for a counter and a light brown rectangle for the floor,
while tiles for stovetops, cutting boards, and the output
area were meant to be small 32x32 COE files that would
be placed as picture blobs at a certain tile.

However, this implementation gave us undesired color
outputs while trying to tweak RGB values, so we ended
up drawing the entire background as a 416x256 pixel
sprite and uploading this as a COE. This method was
pretty inefficient, and probably could have been done in
the method we outlined above to save up on BRAM,
but did end up saving us time generating bitstream from
centering and placement issues, which we did end up
having while implementing grid objects.

B. Static Grid Sprites

Inputs
• clock
• object_grid
• hcount, vcount
• x, y - of the top left pixel of a grid square
Outputs
• pixel_out

Fig. 4. Food and other grid items spritesheet

This module includes components that are placed on
counters that can be interacted with (picked up or put
down) by the player, such as pots, bowls, and the fire
extinguisher. We had nine different 32x32 pixel sprite
COEs that we used for this, representing each possible
state of the grid:

• onion, whole
• onion, chopped
• bowl, empty
• bowl, full
• pot, empty
• pot, full and raw
• pot, full and cooked



• pot, on fire
• fire extinguisher
This module converts the input (x, y) location to a

(grid_x, grid_y) location, which was then used to
index into object_grid to determine the state of the
object at a certain tile. It then reads the corresponding
image address of the COE in order to output the correct
pixel.

This module takes in an x and y value equivalent to the
top left corner of a square of the grid, which we found
by converting (hcount, vcount) to (grid_x,
grid_y) using pixel_to_grid, and then con-
verted the grid coordinates back to (x, y) using
grid_to_pixel: this is necessary because there is
a 112 pixel offset from the top right of the screen –
(0, 0) is actually (112, 112)! – and we want to drop the
5 least significant bits of our (x, y) after accounting
for this offset. By using this method to control the x
and y locations, we only had to call this module once,
instead of multiple times for each location of the grid
and using a mux to determine which of the pixels would
be outputted for a certain (hcount, vcount), which
was more efficient and saved us from a bunch of copy-
pasting (see Figure 5).

Fig. 5. Initially, we tried calling this module for every square of the
grid. It was not a great idea.

C. Player Sprites

Inputs
• clock
• hcount, vcount
• player_x, player_y
• player_direction
• player_state

Outputs
• pixel_out

Sprites:
• Do nothing
• Chopping

Fig. 6. Player spritesheet



• Holding whole onion
• Holding chopped onion
• Holding empty bowl
• Holding bowl with soup
• Holding fire extinguisher, off
• Holding fire extinguisher, on
• Holding empty pot
• Holding pot with soup

This module displays a different sprite for each player
depending on the current state of the player and the
direction that the player is facing, resulting in a total
of 31 COEs (see Figure 6). We used the same sprite for
up (since carrying an item while moving up was barely
visible, and would have cost us about 9.2kB of memory),

The player sprite module finds the color address
corresponding the same image address of each COE.
We then have a mux determining which address is valid,
depending on the current player state and the current
player direction, and then finds the appropriate color on
the color map.

An instance of this module was called for each player:
depending on the number of players in the game, we
also had to determine which player pixels pixel_out
would return. Since all of the sprites returned a white
background, this was done using case statements: if
there was only one player, we would output player 1’s
pixel_out. If we were in multiplayer mode, we would
output the first player whose pixel_out was not white
(12’hFFF, the background color of the sprite), starting
from player 1 taking precedence.

We additionally implemented one sprite animation,
when the player is currently chopping: in the chop state,
the player alternates between the chopping sprite and
the move down sprite, to make it seem like the knife is
moving every few frames. Additional sprite animations
would have doubled the number of COEs we had, as we
would have to have different sprites showing the legs
of the player moving, which would have exceeded our
BRAM limit.

With the exception of the chop state, all other player
sprites had mirrored left/right sprites. From this, one
improvement that we could make on this game could be
to try using the same COE for both directions, but try
calculating the image address differently for a mirrored
sprite. This would save us on 10 COEs, which would
save us about 10kB of memory, allowing us to implement
other sprites.

D. Loading COEs

With so many sprites, it quickly became tedious for
all 3 of us to manually add all of them as IPs each time
we wanted to regenerate the Vivado project. Instead, we

wrote a small Python script1 to generate a TCL script,
which does the IP generation for us. There’s probably a
better approach, but this worked pretty well for us2!

E. Order Displays

Fig. 7. Order display shown in the top left of the screen.

Inputs
• clock
• hcount, vcount
• x, y - position of the order timer on the screen
• order
• order_time

Outputs
• pixel_out

This component of the display the number of orders
out, and time remaining on each order to a player. Since
there could be a maximum of four orders at a time, we
called this module four times with different x locations
(so that they would be aligned side by side on the
top left of the screen), indexing into the order and
order_time arrays to determine whether or not there
was an order – if there wasn’t an order, output black
pixels (12’h000); if there was, display the order and time
remaining.

The order display shows the current order and how
much time is remaining for that order, and are displayed
in the top left corner of the screen. There is a timer
bar showing how much time is remaining on the current
order, which starts as a full (30 pixel wide) green bar,
representing 30s remaining. This bar gets shorter by one
pixel every second, turning yellow at 20s remaining, and
red at 10s remaining. Conveniently, since an order time
was set to 30s max, and each order display had a timer
displayed on top of a 32x32 pixel sprite, we didn’t have
to scale the order timer before displaying it.

F. Combining Graphics

Graphics were combined at the top-level graphics
module, which calls the previous four modules, com-
bines the graphics of each of the display components,

1https://github.com/kyeb/overcooked-
fpga/blob/main/fpga/generate bram generator.py

2Until the script ran all of our computers out of RAM, that is.
We’re pretty sure the script is duplicating work that happens during the
Generate Bitstream flow, but we’re not familiar enough with Vivado
commands/terminology to fix that.

https://github.com/kyeb/overcooked-fpga/blob/main/fpga/generate_bram_generator.py
https://github.com/kyeb/overcooked-fpga/blob/main/fpga/generate_bram_generator.py


Fig. 8. Screenshot of the game start screen

and determines which pixel to output based on a z-
value from each of the modules if there were multiple
components displayed on a single tile. The precedence
of z-values is as follows:

1) start screen – only if state is WELCOME
2) player pixel – which player is already determined

within the Player Sprites module
3) object pixel
4) floor pixel + info out0 + info out1 + info out2 +

info out3
If the current game state is WELCOME, we would

display the start screen as long as the pixel from the start
screen COE was not black. Otherwise, we would display
the player pixel (already put through a mux to determine
which player is getting displayed) if the player existed
at that pixel if it was not white; otherwise the grid object
pixel if it was not white; or lastly, the background and
any order displays.

Using white for the background of sprites made it
a bit easier to compare z-values: for all COEs except
the welcome screen, getting a pixel_out value of
12’hFFF meant that we did not have an object located
at that pixel, and could display something else with a
lower precedence instead.

G. Lessons Learned

Remember to initialize the sizes of values! This ended
up messing up the color map readings and giving us
messed up looking sprites, and took an embarrassingly
long time to fix.

A lot of the issues we found were faced during
debugging, when sprites were off-center or had the
wrong color. Doing the calculations for the locations of
each sprite to have them all align on paper beforehand is

important to avoiding spending a bunch of time waiting
to generate bitstream after changing a single value to get
your background to move left three pixels.

To save on BRAM, we could attempt reusing sprites
(for instance, the head of the character is the same
across all 31 player COEs, and could probably be reused.
We could try having only four COEs for the player
facing in four different directions, and then different held
object COEs (which would only be 5x5) COEs, saving
memory that can be used for other sprites + more sprite
animations. Additionally, we could try using the same
COE for the left and right facing sprites, but change the
address for the mirrored image, to save up on additional
COEs. Using these optimizations, we would only end up
using 3kB for all of the player sprites, instead of 31kB.

V. MULTIPLAYER COMMUNICATIONS (KYE)

In the era of COVID-19, it’s more difficult to simply
enjoy a game of Overcooked with your friends. We
propose an online multiplayer version of the game that
can be played with anyone, anywhere (if they have a
Nexys 4 DDR FPGA lying around, that is).

In multiplayer mode, our game will allow players to
work together to collaboratively cook their soup. At a
high level, this will work by designating a single FPGA
as the “main” and letting the others act as “secondary.”
This is important to ensure there is a single source of
truth for the game state.

A. Serial Interface3

The FPGA needs an interface to the ESP32 in order
to send commands and receive network data. This ended
up taking the form of a UART interface, since we need
data to flow in both directions and want a simple-as-
possible protocol. Using UART also means the C++ side
is as simple as Serial.write() and Serial.read(), instead of
having to deal with an SPI or I2C library.

The module to transmit (TX) was simple, since we
use build a slow version in lab 2. The receive module
(RX) was much more difficult to get working properly.

Serial TX Module
Inputs
• trigger — set to 1 when data_in is set to

trigger a send to the ESP32
• data_in — data to actually send
Outputs
• line_out — connected to ja[0] at the top level

and wired to the ESP32 by hand
• ready — set to 1 when the TX module is in

the idle state, used by the networking module to
determine when to trigger the next send

3https://github.com/kyeb/overcooked-fpga/blob/main/fpga/serial.sv

https://github.com/kyeb/overcooked-fpga/blob/main/fpga/serial.sv


Serial RX Module
Inputs
• line_in — connected to ja[1] at the top level

and wired to the ESP32 by hand
Outputs
• valid — set to 1 for 1 cycle when data_out is

valid
• data_out — decoded data from the UART

On top of the two basic TX/RX modules, there are
also modules to transmit and receive 32 bits (4 bytes)
at a time, in quick succession. This is primarily for
convenience when writing the higher level networking
logic (Section V-B), since our data types to be synchro-
nized primarily fit neatly into single 32-bit chunks or
divides evenly by 32. The word “packet” is used in the
following sections to refer to 32 bits, sent as 4 UART
transmissions.

B. Networking Logic4

Depending on various game state and inputs, some
data needs to be sent to the server and some needs to be
recalled from the server. Since network requests take a
very long time compared to the timescales of the FPGA
clock, we use a state machine keeping track of the status
requests.

We began with implementing networked player move-
ment. This just required an X-Y coordinate pair (18 bits
together), plus 4 bits of “player state” to determine which
player sprite to be used, plus 2 bits of player direction
for which direction they’re facing. This all fits neatly
into 32 bits, which is easily handled by our high-level
serial TX/RX modules as described in Section V-A. The
format of those 32 bits are as follows:
Packet structure

• data[31:30] (2 bits) — player number
• data[29:28] (2 bits) — player direction
• data[27:19] (9 bits) — x position
• data[18:10] (9 bits) — y position
• data[9:6] (4 bits) — player state
• data[5:3] (3 bits) — game state if player_ID
== 0, else 0

• data[2:0] (3 bits) — packet type

Packet types
• 000 — player state
• 111 — HTTP completion ACK
• 001 — board state start packet (indicates the next

15 packets will be the entire board state)

4https://github.com/kyeb/overcooked-
fpga/blob/main/fpga/network.sv

This structure is encoded on one side, transmitted
through the ESP32 and server, then decoded in the same
way on the other FPGAs in order to synchronize the
player positions and actions.

The comms module contains 4 state machines. The
first is trivial — it simply sets the local positions for
the other players when it receives a packet containing a
player position, as determined by the last 3 bits, which
are different for different packet types. This runs at all
times, on all FPGAs.

The second handles transmitting the player state. This
also needs to run on all 4 FPGAs, since every player
needs to be able to see all the other players. The
state machine sits in idle unless the local player’s state
changes, which is almost always true. If the player state
is different from the last time it was when in idle5, the
serial TX module is triggered with the player state data.
It then sits in the “wait” state until it receives an ACK
packet back, as designated by the least-significant 3 bits.

The third and fourth state machines handle transmit-
ting and receiving the board state, respectively. That
means the third only runs on the main FPGA, and
the fourth only on secondaries. They work similarly:
when the transmit/receive modules are not busy handling
player states, they send/read the total board state as a
series of 15 packets, totalling 480 bits. The transmit
module leads with a board state start packet (defined
in the Packet Types section), and the receive module is
triggered to start reading board state upon receiving a
board state start packet. They each then handle read-
ing/writing the correct registers in the object_grid,
time_grid, and points_total to maintain syn-
chronization.
Comms module

Inputs
• game state (primary only)
• local_x, local_y, local_direction,
local_state — state for this player, to be sent
to the server

• player_ID — to make sure the server knows
which player this state is for, and to determine if it
should act as the main or as a secondary

• local_object_grid, local_time_grid,
local_point_total — state stored on the
main to be synchronized out to the other FPGAs

Outputs
• Full player state (x, y, direction, state) from all 4

players
• Full game state (board, times, points) from

5This handles the case where the local state changes while the ESP32
is still sending the POST request and then stops changing — those will
still be caught and transmitted on the next idle

https://github.com/kyeb/overcooked-fpga/blob/main/fpga/network.sv
https://github.com/kyeb/overcooked-fpga/blob/main/fpga/network.sv


This module serves to abstract the complexity of both
HTTP requests and syncing data across a network so the
display/game logic don’t need to worry about it. There
is significant complexity in data synchronization, espe-
cially from the low-level perspective of FPGA hardware,
so this module ended up being somewhat complex to
design.

Testing this module was done by syncing simple data
between two FPGAs at first (just the first 8 switch bits).
Gradually increasing the complexity of the synchronized
data allowed us to build functionality modularly.

C. ESP326

The code running on the ESP32 purely forwards the
bits that the FPGA sends it on to the server. Depending
on the state, as specified in section V-B, the FPGA will
send various data to the ESP32. The ESP32 will then
translate those into HTTP requests, send them to the
server (section V-D), and transmit the data it receives
back to the FPGA.

Fig. 9. The full setup

ESP32
Inputs
• RX — pin 22 on the ESP32, connected to ja[0]

on the FPGA
• HTTP POST responses over WiFi
Outputs
• TX — pin 23 on the ESP32, connected to ja[1]

on the FPGA
• HTTP POST requests over WiFi
Most of the logic in C++ for the ESP32 is to translate

between usable data formats for the FPGA and for the
Python server. The FPGA works in raw bits, which are

6https://github.com/kyeb/overcooked-
fpga/blob/main/esp32/esp32.ino

sent over the wire to the ESP32 and read in using the
simple Serial.read(). Each Serial.read() call
returns 8 bits (1 byte). With each 4 bytes received, the
ESP32 uses some bit tricks to combine them into a
single, easily-readable 32-bit integer (uint32_t). This
gives an easy data type to work with, since it can always
be represented by a 10 digit integer.

On the secondary ESP32s, the received data is just
a single 32-bit integer representing the complete player
state. That is sent via POST request to the server, running
on AWS. The server then returns the latest board state
it has stored in the database, as a the body of the
HTTP response. Upon receiving a response string from
the server, the ESP32 forwards an “ACK” packet to
the FPGA to reset the FPGA’s TX state machine and
indicate it’s ready to receive another player position.
The response string is parsed into an array of 15 32-bit
integers. The ESP32 sends a “start packet” marked with
a unique bit set to indicate it is about to send a board
state. It then forwards the full board state it received on
to the FPGA, one 32-bit packet at a time.

On the main ESP32, the received data is the full
board state plus one player’s state, which are handled
independently but sent to the server in a single POST
request. The response contains the latest 4 player’s
positions, which are relayed back to the main FPGA.

D. Server7

A tiny server is running on an AWS VM, somewhere
in Ohio. Its only purpose is to take in the state from the
ESP32s, write it to a database, and return it to the others
on demand. Using Python made it particularly simple.
The entire server is under 100 lines of meaningful code.
The complexity of this kind of simple CRUD server is
very low.

Since player states are represented as 32-bit in-
tegers, it is simple to do the same in Python.
update_player_state() computes which player
the player state came from (from the top 2 bits of
the number), then updates the relevant entry in the
database. get_player_states() returns a string
concatenating the up-to-4 player states in a way that is
easily parsed by the ESP32 back into integers.

Since the board state is just a single concatenation of
15 32-bit integers into a string to send over HTTP and
HTTP responses must also be strings, it’s pointless to
parse the integers in Python at all. So, we just save the
string in a singleton database table for the board state,
returning the exact same string when needed.

7https://github.com/kyeb/overcooked-
fpga/blob/main/server/fast app.py

https://github.com/kyeb/overcooked-fpga/blob/main/esp32/esp32.ino
https://github.com/kyeb/overcooked-fpga/blob/main/esp32/esp32.ino
https://github.com/kyeb/overcooked-fpga/blob/main/server/fast_app.py
https://github.com/kyeb/overcooked-fpga/blob/main/server/fast_app.py


E. Addressing Network Latency

In any multiplayer game, latency is the enemy. We
made several key optimizations to make the latency
reasonably playable.

First, network requests were reduced to an absolute
minimum — all information that each ESP32 needs
to send is concatenated into a single request, and all
the information it needs to receive is sent back in the
response. Barring asynchronous requests, this is optimal.

Second, I noticed that there was an increasing delay
as the game went on. Eventually, with some research
into the internal hardware serial implementation in the
ESP32, I had a hunch that UART bytes were building up
in the internal buffer and only reaching the ESP32 with a
significant delay. This also makes sense as a bottleneck,
since the ESP32 runs code significantly slower than
the FPGA’s pure hardware implementation. Amazingly,
inserting a call to FPGASerial.flush() to clear the
internal buffer was able to massively reduce this delay
and keep most communications much more up-to-date,
confirming my hunch.

Using a non-HTTP protocol such as directly sending
UDP packets would likely reduce lag substantially. Un-
fortunately, we did not have time to explore that in this
project.

F. Lessons Learned

It is crucial to actually look at a pinout of the device
you are using. Somehow, I managed to waste almost 4
hours debugging just getting the basic UART TX/RX
working. The problem? The FPGA numbers its header
pins horizontally, not vertically. Pin 1 is to the left, not
below pin 0.

If you’re designing a protocol for two devices to
communicate, treat it as such from the beginning. I
hacked it together, only getting the basic functionality
working at each level before moving on to the next
task. This meant I often had to go back and revise
previous code to fit new requirements. If I had just
designed a protocol from the beginning to cover all the
requirements, there would have been substantially less
rewriting.

Finally, debugging many-step communication systems
is hard. It’s very important, at least while building, to
have some form of tracing to make sure you know
exactly where it is breaking down. There were many
times when the communications wouldn’t be working,
and I would spend an hour or two rereading or tweaking
some piece of code only to realize it was a problem with
an entirely different device. Design an easy way to find
where things are breaking in the pipeline of secondary
FPGA → secondary ESP32 → server → main ESP32
→ main FPGA.

VI. BLOCK DIAGRAM

Block diagram on next page.

VII. VERILOG CODE

https://github.com/kyeb/overcooked-fpga.

https://github.com/kyeb/overcooked-fpga


Fig. 10. Block Diagram



Fig. 11. Game Logic Block Diagram



Fig. 12. Graphics Block Diagram



Fig. 13. Comms Block Diagram


	Introduction
	Structural Description of the Top Level Module (All)
	Game Logic (Julia)
	Individual Player Movement
	Main FPGA Player Movement
	Time Remaining
	Lessons Learned

	Graphics (Lacthu)
	Game Map
	Static Grid Sprites
	Player Sprites
	Loading COEs
	Order Displays
	Combining Graphics
	Lessons Learned

	Multiplayer Communications (Kye)
	Serial Interfacehttps://github.com/kyeb/overcooked-fpga/blob/main/fpga/serial.sv
	Networking Logichttps://github.com/kyeb/overcooked-fpga/blob/main/fpga/network.sv
	ESP32https://github.com/kyeb/overcooked-fpga/blob/main/esp32/esp32.ino
	Serverhttps://github.com/kyeb/overcooked-fpga/blob/main/server/fast_app.py
	Addressing Network Latency
	Lessons Learned

	Block Diagram
	Verilog Code

